
Robot Manipulators
Forward Kinematics of Serial Manipulators

Fig. 1: Stanford Arm

The focus of this module and the goal of forward kinematics (or direct kinematics) is obtaining 

the position and orientation of the end-effector of a robot manipulator, with respect to a 

reference frame, based on the orientations and configuration of the segments that comprise 

the manipulator. This module introduces the Denavit-Hartenberg (DH) convention and 

parameters that are used to describe these orientations and configurations, and provide a 

standard approach to forward kinematics.  

Links and Joints

Denavit-Hartenberg Convention
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This is a convention used to attach a coordinate system to each link of a manipulator. The 

coordinate systems are attached according to the following rules :

The origin of coordinate system  is located at the point of intersection of the axis of 

joint  and the common normal between the axes of joints  and .

The  -axis is aligned with the axis of the  joint. The positive direction of this 

axis can be chosen arbitrarily.

The  -axis is aligned with the common normal of the  and  joint axes and 

points form the  to the  joint. 

The  -axis is determined using the right-hand rule.

The coordinate systems of the ground and end effector links do not follow these rules. The 

coordinate system of the ground link can be chosen based on convenience as long as the 

 -axis is aligned with the axis of joint 1. The coordinate system of the end effector, also 

called the hand coordinate system, can also be chosen based on convenience as long as its

 -axis is normal to the last joint axis.   

Denavit-Hartenberg Parameters

Any serial manipulator can be described kinematically by specifying four parameters for 

each link.

Regardless of the physical construction of the actual link connecting two joints, their relative 

location can be described using two parameters:

: length of the common normal between the axes of joint  and joint . This is also 

known as the length of the link.

 : angle measured from the axis of joint  to axis of joint . This is also known as 

the twist of the link.
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Fig. 3: Length and twist

Similarly, two more parameters can describe the locations of the links relative to each other:

 : offset distance between the common normal of the axes of joint  and joint  and 

the common normal of the axes of joint  and joint . This is also known as the

offset of the link. 

 : angle between the common normal of the axes of joint  and joint  and the 

common normal of the axes of joint  and joint . This is also known as the angle of 

the joint.



2. 2. 

1. 1. 

Fig. 4: Offset and angle

For a revolute joint,  is the only parameter that is variable and for a prismatic joint,  is the 

only parameter that is variable.
Table 1: Joint variables and parameters

Joint Joint 
variable

Link parameters 
(constant)

Revolute Angle 
Length 
Twist 
Offset 

Prismatic Offset 

Length 
Twist 

Angle 

Special Cases

If the  and  joint axes intersect then  is 0.

If the  and  joint axes are parallel then  is constant and an infinite number

of common normals exist. Usually, the common normal that makes  is used for 

attaching the link coordinate system.
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If the   and  joint axes coincide then the origin of the  coordinate system 

is chosen arbitrarily. The choice of axes that makes most parameters 0 is 

preferable. 

Denavit-Hartenberg Homogeneous Transformation Matrices

Using the DH convention and parameters, transformation matrices relating two successive 

coordinate systems can be established. The  coordinate system can be obtained through 

successive rotations and translations of the  coordinate system:

The  coordinate system is translated along the  -axis by a distance . The 

corresponding transformation matrix is 

 ... Eq. (1)

The displaced coordinate system is rotated about the  -axis by an angle . This 

aligns the displaced  -axis with the  -axis. The corresponding transformation matrix

is

... Eq. (2)

The displaced coordinate system is translated along the  -axis by a distance . The 
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corresponding transformation matrix is 

... Eq. (3)

The displaced coordinate system is rotated about the  -axis by an angle . This is the 

final step that transforms the  coordinate system to the  coordinate system. 

The corresponding transformation matrix is

... Eq. (4)

The resulting transformation matrix is

... Eq. (5)

which can be expanded to 
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... Eq. (6)

Multiplying this transformation matrix and the position vector of a point with respect to the  

coordinate system will give the position vector of the point with respect to the  

coordinate system. 

Example 1: 3-DOF Planar Manipulator

A planar manipulator with 3 degrees of freedom is constructed with three revolute joints. A 

reference coordinate system is attached to the base such that the manipulator moves in this

system's x-y plane. For this manipulator, all the twist angles and offset distances of the links

are equal to 0. 

a) Find the DH transformation matrices ,  and  in terms of the following joint 

variables and link parameters:
Table 2: 3-dof planar manipulator joint variables and link parameters

Join
t 

b) Find the position vector of the end-effector coordinate system with respect to the base 

reference frame for the following values:
Table 3: 3-dof planar manipulator joint variable and link parameter values
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Analytical Solution

Part a) Transformation matrices in terms of joint variables and link 
parameters

Part b) Position vector of the origin of the end-effector coordinate system 
with respect to the base reference frame

Solution and visualization with MapleSim

Constructing the model

Create an "Axes" subsystem

Create a "revolute DH" subsystem

This subsections contains the steps to build a subsystem that can be used to build 

the manipulator arm link by link using the DH parameters and variables. 
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Step 1: Insert components

Drag the following components into the main workspace:
Table 5: Components and locations

Component Location

(3 required)

Multibody > 
Bodies and 

Frames

(2 required)

Multibody > 
Visualization

Multibody > 
Joints and 

Motions

Make 3 additional copies of the Axes subsystem.

A dialog box will appear while making copies of the subsystem. Select

Convert to a shared subsystem (Recommended). Selecting this option 

causes any changes made to one subsystem to be automatically made to the 

others.

Right click the fourth copy of the Axes subsystem and click Convert to 
Standalone Subsystem. 

Double click this subsystem, change the radius of all its Cylindrical 
Geometry components to 0.02 m and all the radius at frame_a values of the
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Tapered Cylindrical Geometry components to 0.04 m. This makes the axes 

of this particular subsystem thicker. This modified Axes subsystem will be 

used to visualize each link's coordinate system, and the other three axes 

subsystems will be used to visualize the intermediate axes that show the 

successive rotations and translations that transform one link's coordinate 

system to the next link's coordinate system.

Step 2: Connect components

Arrange and connect the components as shown in the following diagram:

Fig. 8: Component diagram

Step 3: Create a subsystem

Select all the components and their connections. 

Press Ctrl+G to create a subsystem. 

Enter DH for the name of the subsystem and click OK.

Double-click the subsystem component created in the main workspace.

Connect the left port (frame_a) of RBF1 to a point on the dashed border on 

the left, as shown in Fig. 9. 

Connect the right port (frame_b) of RBF3 to a point on the dashed border on 

the right, as shown in Fig. 9.

Connect flange_b of the Revolute component to a point on the top border, as
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shown in Fig 9.

Fig. 9: DH subsystem

Click Add or Change Parameters in the Inspector pane of this subsystem.

Create parameters as shown in Fig. 10.

Fig. 10: DH parameters

Return to the diagram (click ), click RBF1 and enter [0,0,d_i] for the x,

y,z offset ( ).

Click RBF2 and enter [a_i,0,0] for the x,y,z offset ( ).

Click RBF3, enter [0,0,0] for the x,y,z offset ( ) and enter [alpha_i,0,0] 

for the Rotations about the axes ( ).

Click CG1 , enter 0.008 m for the radius and change the color to purple.

Click CG2, enter 0.008 m for the radius and change the color to orange 
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(these CG components help visualize the link lengths and offsets).

Create a revolute joint visualization subsystem

Construct the manipulator

Add a parameter block and run simulation

Click the Add a parameter block icon ( ) and click on the main workspace. 

Double-click the Parameter block icon and create the following parameters. 

Fig. 13: Link parameters and joint variables

Return to the main workspace, click on the Parameter Block icon and enter 

the specified parameter values for the parameters.

Click the leftmost Constant component (see Fig. 12) and enter theta_1 for the

constant .

Click the next Constant component and enter theta_2 for the constant .

Click the rightmost Constant component and enter theta_3 for the constant .

Click the first DH component (connected to the Fixed Frame) and enter a_1, 
alpha_1 and d_1 for a_i, alpha_i and d_i respectively.

Similarly, enter the corresponding parameters for the remaining two DH 

components.

For each Rotational Position component, click the component and select

exact under parameters. 

Attach a Probe to the r port of the sensor.

Click the probe and select 1, 2 and 3  in the Inspector pane. 
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Click the Absolute Translation Sensor and select Inertial for the Frame. 

Click the Cylindrical Geometry components and change their color to 

gray.

Reduce the Simulation duration to 1 sec (this is a static model).

Click Run Simulation ( ). 

Use  in the 3-D workspace toolbar to hide implicit geometry.

Fig. 14 shows the 3-D visualization of the MapleSim model. The intermediate coordinate 

systems (thinner arrows) allow us to follow the successive rotations and translations of 

the  coordinate system that result in the  coordinate system. 

Fig. 14: 3-dof planar manipulator visualization

Fig. 15 shows the results of the simulation. These results match the answer obtained 

analytically in part b) of the problem.
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Fig. 15: 3-dof planar manipulator simulation results

The Constant components connected to the Rotational Position components can be 

replaced with Ramp components to visualize the motion of the arm as the joint variables 

change from 0 to the specified values. The following video shows this:
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Video Player

Video 1: P3-dof planar manipulator motion visualization

The following diagram shows the modified component diagram with Ramp components.



12. 12. 

7. 7. 

3. 3. 

3. 3. 

5. 5. 

14. 14. 

Fig. 16: Component diagram with Ramp components

Example 2: 3-DOF Spatial Manipulator

Example 3: Stanford Manipulator

A Stanford Arm manipulator consists of 5 revolute joints and 1 prismatic joint (see Fig. 19). 

A reference coordinate system is attached at the base such that its z-axis coincides with the

first joint axis. For this manipulator, since all the joint axes intersect, all the link length 

parameters ( ) are equal to 0. Some of the other constraints specific to this type of 

manipulator are given in Table 10.
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Fig. 19: Stanford Arm links and joints

a) Find the DH transformation matrices , , , ,  and   in terms of the following 

joint variables and link parameters:
Table 10: Link parameters and joint variables
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b) Find the position vector of the end-effector coordinate system with respect to the base 

reference frame for the following values:
Table 11: Link parameter and joint variable values

Join
t 
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Analytical Solution

Part a) Transformation matrices in terms of joint variables and link 
parameters

Part b) Position vector of the origin of the end-effector coordinate system 
with respect to the base reference frame

Solution and Visualization with MapleSim

Constructing the model

Modify the revolute DH subsystem and create a prismatic DH subsystem

Set up the simulation

Set up the visualization

Run the simulation

Attach an Absolute Translation sensor component to the rightmost port of 

the  DH component.

Click the sensor and select Inertial for the Frame. 

Attach a Probe to the r port of this sensor.

Click the probe and select 1,2 and 3  in the Inspector pane. 
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Reduce the Simulation duration to 1 sec (this is a static model).

Click Run Simulation ( ). 

Similar to Examples 1 and 2, the Constant components connected to the Rotational 
Position components can be replaced with Ramp components to visualize the motion of 

the arm as the joint variables change from 0 to the specified values. The following video 

shows this motion:
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Video Player

Video 3: Stanford arm motion visualization
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Fig. 31 shows the simulation results of this simulation (using Ramp components). Each 

joint variable changes linearly from 0 to its specified value over a period of 1 second. The

sequence of motions is in the same order as the joint numbering.  

Fig. 31: Simulation results with motion

The position at the end of the simulation matches the position vector obtained in part b) 

of the analytical solution.
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